feat: refactor Grafana alerting rules into a consolidated system module and update individual alert files
This commit is contained in:
@@ -1,66 +1,58 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
grafanaAlertRuleDefinitions = [
|
||||
{
|
||||
name = "CPUUsageAlerts";
|
||||
folder = "System Alerts";
|
||||
interval = "1m";
|
||||
uid = "high-cpu-usage-alert-uid";
|
||||
title = "HighCPUUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
rules = [
|
||||
data = [
|
||||
# Query A: Calculate CPU usage percentage
|
||||
{
|
||||
uid = "high-cpu-usage-alert-uid";
|
||||
title = "HighCPUUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
data = [
|
||||
# Query A: Calculate CPU usage percentage
|
||||
{
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query over the last minute
|
||||
model = {
|
||||
# Calculate average CPU usage over 1m, grouped by instance and job
|
||||
expr = ''(1 - avg by (instance, job) (rate(node_cpu_seconds_total{mode="idle"}[1m]))) * 100'';
|
||||
legendFormat = "CPU usage on {{instance}} ({{job}})";
|
||||
instant = false; # This is a range query
|
||||
};
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 90"; # Alert if CPU usage from C is > 90%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "5m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High CPU usage on {{ $labels.instance }}";
|
||||
description = ''CPU usage on {{ $labels.instance }} (job: {{ $labels.job }}) has been above 90% for more than 5 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query over the last minute
|
||||
model = {
|
||||
# Calculate average CPU usage over 1m, grouped by instance and job
|
||||
expr = ''(1 - avg by (instance, job) (rate(node_cpu_seconds_total{mode="idle"}[1m]))) * 100'';
|
||||
legendFormat = "CPU usage on {{instance}} ({{job}})";
|
||||
instant = false; # This is a range query
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "performance";
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 90"; # Alert if CPU usage from C is > 90%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "5m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High CPU usage on {{ $labels.instance }}";
|
||||
description = ''CPU usage on {{ $labels.instance }} (job: {{ $labels.job }}) has been above 90% for more than 5 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "performance";
|
||||
};
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
@@ -1,85 +1,76 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
grafanaAlertRuleDefinitions = [
|
||||
{
|
||||
# orgId = 1; # Defaults to 1 for provisioned rules
|
||||
name = "DiskUsageAlerts"; # Name of the rule group
|
||||
folder = "System Alerts"; # The folder these rules belong to in Grafana UI
|
||||
interval = "1m"; # How often to evaluate rules in this group
|
||||
uid = "high-disk-usage-alert-uid"; # Optional: provide a stable UID for the rule itself
|
||||
title = "HighDiskUsage"; # Name of the alert rule (was 'alert' in vmalert)
|
||||
|
||||
rules = [
|
||||
# Condition for the alert to fire. 'D' refers to the refId of the threshold expression.
|
||||
condition = "D"; # Condition is now D
|
||||
# Removed rule-level relativeTimeRange
|
||||
|
||||
# Data queries and expressions
|
||||
data = [
|
||||
# Query A: Calculate disk usage percentage
|
||||
{
|
||||
uid = "high-disk-usage-alert-uid"; # Optional: provide a stable UID for the rule itself
|
||||
title = "HighDiskUsage"; # Name of the alert rule (was 'alert' in vmalert)
|
||||
|
||||
# Condition for the alert to fire. 'C' refers to the refId of the threshold expression.
|
||||
condition = "D"; # Condition is now D
|
||||
# Removed rule-level relativeTimeRange
|
||||
|
||||
# Data queries and expressions
|
||||
data = [
|
||||
# Query A: Calculate disk usage percentage
|
||||
{
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid"; # UID of the VictoriaMetrics datasource
|
||||
queryType = "prometheus"; # Explicitly set, though often inferred
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query-level, integer seconds
|
||||
model = {
|
||||
expr = ''
|
||||
(
|
||||
node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""} - node_filesystem_avail_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
) / (node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""} > 0) * 100
|
||||
and node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
and node_filesystem_avail_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
'';
|
||||
legendFormat = "{{mountpoint}} on {{instance}}"; # Example legend
|
||||
instant = false; # For range queries, default is false
|
||||
};
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 85"; # Check if the last value from each series in C is > 85
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "15m"; # Duration the condition must be met (same as vmalert)
|
||||
|
||||
# How to handle states where data is missing or query errors
|
||||
noDataState = "NoData"; # Options: NoData, Alerting, OK
|
||||
execErrState = "Error"; # Options: Error, Alerting, OK
|
||||
|
||||
annotations = {
|
||||
summary = "High disk usage on {{ $labels.instance }} at {{ $labels.mountpoint }}";
|
||||
description = ''
|
||||
Disk usage on {{ $labels.instance }} for mount point {{ $labels.mountpoint }}
|
||||
(fstype: {{ $labels.fstype }}) has been above 85% for more than 15 minutes.
|
||||
Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.
|
||||
''; # Using $values.C as it's the input to the math condition D
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid"; # UID of the VictoriaMetrics datasource
|
||||
queryType = "prometheus"; # Explicitly set, though often inferred
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query-level, integer seconds
|
||||
model = {
|
||||
expr = ''
|
||||
(
|
||||
node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""} - node_filesystem_avail_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
) / (node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""} > 0) * 100
|
||||
and node_filesystem_size_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
and node_filesystem_avail_bytes{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
'';
|
||||
legendFormat = "{{mountpoint}} on {{instance}}"; # Example legend
|
||||
instant = false; # For range queries, default is false
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "capacity";
|
||||
# Grafana automatically adds labels from the query result (instance, mountpoint, etc.)
|
||||
# and labels from the rule group/folder.
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 85"; # Check if the last value from each series in C is > 85
|
||||
};
|
||||
# isPaused = false; # Default is not paused
|
||||
}
|
||||
];
|
||||
|
||||
for = "15m"; # Duration the condition must be met (same as vmalert)
|
||||
|
||||
# How to handle states where data is missing or query errors
|
||||
noDataState = "NoData"; # Options: NoData, Alerting, OK
|
||||
execErrState = "Error"; # Options: Error, Alerting, OK
|
||||
|
||||
annotations = {
|
||||
summary = "High disk usage on {{ $labels.instance }} at {{ $labels.mountpoint }}";
|
||||
description = ''
|
||||
Disk usage on {{ $labels.instance }} for mount point {{ $labels.mountpoint }}
|
||||
(fstype: {{ $labels.fstype }}) has been above 85% for more than 15 minutes.
|
||||
Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.
|
||||
''; # Using $values.C as it's the input to the math condition D
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "capacity";
|
||||
# Grafana automatically adds labels from the query result (instance, mountpoint, etc.)
|
||||
# and labels from the rule group/folder.
|
||||
};
|
||||
# isPaused = false; # Default is not paused
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
@@ -1,62 +1,54 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
grafanaAlertRuleDefinitions = [
|
||||
{
|
||||
name = "HostStatusAlerts";
|
||||
folder = "System Alerts";
|
||||
interval = "1m";
|
||||
uid = "host-down-alert-uid";
|
||||
title = "HostDown";
|
||||
condition = "C";
|
||||
|
||||
rules = [
|
||||
data = [
|
||||
{
|
||||
uid = "host-down-alert-uid";
|
||||
title = "HostDown";
|
||||
condition = "C";
|
||||
|
||||
data = [
|
||||
{
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query over the last minute
|
||||
model = {
|
||||
expr = ''up'';
|
||||
legendFormat = "{{instance}} ({{job}})";
|
||||
instant = false; # Changed from true, as relativeTimeRange is used
|
||||
};
|
||||
}
|
||||
{ # New Expression B: Reduce Query A
|
||||
refId = "B";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
{ # Modified Expression C: Math condition based on B
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$B == 0"; # Check if the last value from B is 0
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "2m";
|
||||
noDataState = "Alerting";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "Host {{ $labels.instance }} is down";
|
||||
description = ''Host {{ $labels.instance }} (job: {{ $labels.job }}) has been down for more than 2 minutes.'';
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; }; # Query over the last minute
|
||||
model = {
|
||||
expr = ''up'';
|
||||
legendFormat = "{{instance}} ({{job}})";
|
||||
instant = false; # Changed from true, as relativeTimeRange is used
|
||||
};
|
||||
labels = {
|
||||
severity = "critical";
|
||||
category = "availability";
|
||||
}
|
||||
{ # New Expression B: Reduce Query A
|
||||
refId = "B";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
{ # Modified Expression C: Math condition based on B
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$B == 0"; # Check if the last value from B is 0
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "2m";
|
||||
noDataState = "Alerting";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "Host {{ $labels.instance }} is down";
|
||||
description = ''Host {{ $labels.instance }} (job: {{ $labels.job }}) has been down for more than 2 minutes.'';
|
||||
};
|
||||
labels = {
|
||||
severity = "critical";
|
||||
category = "availability";
|
||||
};
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
@@ -1,71 +1,63 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
grafanaAlertRuleDefinitions = [
|
||||
{
|
||||
name = "InodeUsageAlerts";
|
||||
folder = "System Alerts";
|
||||
interval = "1m";
|
||||
uid = "high-inode-usage-alert-uid";
|
||||
title = "HighInodeUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
rules = [
|
||||
data = [
|
||||
# Query A: Calculate inode usage percentage
|
||||
{
|
||||
uid = "high-inode-usage-alert-uid";
|
||||
title = "HighInodeUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
data = [
|
||||
# Query A: Calculate inode usage percentage
|
||||
{
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; };
|
||||
model = {
|
||||
expr = ''
|
||||
(
|
||||
node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""} - node_filesystem_files_free{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
) / (node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""} > 0) * 100
|
||||
and node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
and node_filesystem_files_free{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
'';
|
||||
legendFormat = "{{mountpoint}} on {{instance}}";
|
||||
instant = false;
|
||||
};
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 80"; # Alert if inode usage from C is > 80%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "30m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High inode usage on {{ $labels.instance }} at {{ $labels.mountpoint }}";
|
||||
description = ''Inode usage on {{ $labels.instance }} for mount point {{ $labels.mountpoint }} (fstype: {{ $labels.fstype }}) has been above 80% for more than 30 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; };
|
||||
model = {
|
||||
expr = ''
|
||||
(
|
||||
node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""} - node_filesystem_files_free{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
) / (node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""} > 0) * 100
|
||||
and node_filesystem_files{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
and node_filesystem_files_free{fstype!~"tmpfs|rootfs",mountpoint!=""}
|
||||
'';
|
||||
legendFormat = "{{mountpoint}} on {{instance}}";
|
||||
instant = false;
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "capacity";
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 80"; # Alert if inode usage from C is > 80%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "30m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High inode usage on {{ $labels.instance }} at {{ $labels.mountpoint }}";
|
||||
description = ''Inode usage on {{ $labels.instance }} for mount point {{ $labels.mountpoint }} (fstype: {{ $labels.fstype }}) has been above 80% for more than 30 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "capacity";
|
||||
};
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
@@ -1,69 +1,61 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
grafanaAlertRuleDefinitions = [
|
||||
{
|
||||
name = "RAMUsageAlerts";
|
||||
folder = "System Alerts";
|
||||
interval = "1m";
|
||||
uid = "high-ram-usage-alert-uid";
|
||||
title = "HighRAMUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
rules = [
|
||||
data = [
|
||||
# Query A: Calculate RAM usage percentage
|
||||
{
|
||||
uid = "high-ram-usage-alert-uid";
|
||||
title = "HighRAMUsage";
|
||||
condition = "D"; # Condition is now D
|
||||
|
||||
data = [
|
||||
# Query A: Calculate RAM usage percentage
|
||||
{
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; };
|
||||
model = {
|
||||
expr = ''
|
||||
(1 - node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes > 0)) * 100
|
||||
and node_memory_MemAvailable_bytes
|
||||
and node_memory_MemTotal_bytes
|
||||
'';
|
||||
legendFormat = "RAM usage on {{instance}} ({{job}})";
|
||||
instant = false;
|
||||
};
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 90"; # Alert if RAM usage from C is > 90%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "10m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High RAM usage on {{ $labels.instance }}";
|
||||
description = ''RAM usage on {{ $labels.instance }} (job: {{ $labels.job }}) has been above 90% for more than 10 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
refId = "A";
|
||||
datasourceUid = "vm-datasource-uid";
|
||||
queryType = "prometheus";
|
||||
relativeTimeRange = { from = 60; to = 0; };
|
||||
model = {
|
||||
expr = ''
|
||||
(1 - node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes > 0)) * 100
|
||||
and node_memory_MemAvailable_bytes
|
||||
and node_memory_MemTotal_bytes
|
||||
'';
|
||||
legendFormat = "RAM usage on {{instance}} ({{job}})";
|
||||
instant = false;
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "performance";
|
||||
}
|
||||
# Expression C: Reduce Query A to its last value, preserving labels
|
||||
{
|
||||
refId = "C";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "reduce";
|
||||
expression = "A"; # Input is Query A
|
||||
reducer = "last"; # Get the last value of each series in A
|
||||
};
|
||||
}
|
||||
# Expression D: Apply math condition to the reduced values from C
|
||||
{
|
||||
refId = "D";
|
||||
datasourceUid = "__expr__";
|
||||
model = {
|
||||
type = "math";
|
||||
expression = "$C > 90"; # Alert if RAM usage from C is > 90%
|
||||
};
|
||||
}
|
||||
];
|
||||
|
||||
for = "10m"; # Duration the condition must be met
|
||||
noDataState = "NoData";
|
||||
execErrState = "Error";
|
||||
|
||||
annotations = {
|
||||
summary = "High RAM usage on {{ $labels.instance }}";
|
||||
description = ''RAM usage on {{ $labels.instance }} (job: {{ $labels.job }}) has been above 90% for more than 10 minutes. Current value: {{ if $values.C }}{{ $values.C | humanizePercentage }}{{ else }}N/A{{ end }}%.'';
|
||||
};
|
||||
labels = {
|
||||
severity = "warning";
|
||||
category = "performance";
|
||||
};
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
21
hosts/web-arm/modules/grafana/alerting/system/default.nix
Normal file
21
hosts/web-arm/modules/grafana/alerting/system/default.nix
Normal file
@@ -0,0 +1,21 @@
|
||||
{ lib, pkgs, config, ... }:
|
||||
let
|
||||
# Import rule definitions from refactored alert files in the parent 'alerting' directory
|
||||
cpuAlertRules = (import ../cpu_usage.nix { inherit lib pkgs config; }).grafanaAlertRuleDefinitions;
|
||||
diskAlertRules = (import ../disk_usage.nix { inherit lib pkgs config; }).grafanaAlertRuleDefinitions;
|
||||
hostDownAlertRules = (import ../host_down.nix { inherit lib pkgs config; }).grafanaAlertRuleDefinitions;
|
||||
inodeAlertRules = (import ../inode_usage.nix { inherit lib pkgs config; }).grafanaAlertRuleDefinitions;
|
||||
ramAlertRules = (import ../ram_usage.nix { inherit lib pkgs config; }).grafanaAlertRuleDefinitions;
|
||||
|
||||
allSystemRules = cpuAlertRules ++ diskAlertRules ++ hostDownAlertRules ++ inodeAlertRules ++ ramAlertRules;
|
||||
in
|
||||
{
|
||||
services.grafana.provision.alerting.rules.settings.groups = [
|
||||
{
|
||||
name = "System Alerts"; # This is the Grafana alert group name
|
||||
folder = "System Alerts"; # This is the Grafana folder name
|
||||
interval = "1m";
|
||||
rules = allSystemRules;
|
||||
}
|
||||
];
|
||||
}
|
||||
@@ -28,11 +28,13 @@ let
|
||||
in
|
||||
{
|
||||
imports = [
|
||||
./alerting/disk_usage.nix
|
||||
./alerting/cpu_usage.nix
|
||||
./alerting/host_down.nix
|
||||
./alerting/inode_usage.nix
|
||||
./alerting/ram_usage.nix
|
||||
# Individual alert files removed, now handled by alerting/system/default.nix
|
||||
# ./alerting/disk_usage.nix
|
||||
# ./alerting/cpu_usage.nix
|
||||
# ./alerting/host_down.nix
|
||||
# ./alerting/inode_usage.nix
|
||||
# ./alerting/ram_usage.nix
|
||||
./alerting/system/default.nix # Added: Imports the consolidated system alerts module
|
||||
# ... other rule files can be added here ...
|
||||
./datasources/victoriametrics.nix
|
||||
];
|
||||
@@ -99,7 +101,7 @@ in
|
||||
};
|
||||
provision = {
|
||||
alerting = {
|
||||
rules.settings.groups = lib.mkMerge []; # Allows rule groups to be merged
|
||||
rules.settings.groups = lib.mkMerge []; # Allows rule groups to be merged (including the one from system/default.nix)
|
||||
contactPoints = {
|
||||
settings = {
|
||||
apiVersion = 1; # As per Grafana provisioning API
|
||||
|
||||
Reference in New Issue
Block a user